Luis Modes

"Being happy is the greatest form of success." - unknown

Research Interests

Algebraic geometry, arithmetic geometry, and topology

Profile

Languages: English (fluent), Spanish (native), and Japanese (intermediate) Programming: Python, LATEX, and SageMath Skills: Problem-solving, math olympiad coaching, and mentoring

Education

Massachusetts Institute of Technology	Cambridge, MA
Undergraduate	September 2021 – Present
Academia Interamericana de Panamá sede Cerro Viento	Panama, Panama
High School Diploma	March 2008 – December 2020
Selected Honors and Awards	

gust 2024
July 2021
nber 2020
16 - 2020
2019
)

Research Experience

Summer Program in Undergraduate Research (SPUR)

• Generalized a theorem that identifies the spherical Hall algebra of $\operatorname{Spec}(\mathbb{Z})$ with a shuffle algebra to a theorem about the spherical Hall algebra of $\overline{\operatorname{Spec}(\mathcal{O}_K)}$, where K is a number field with class number 1 and \mathcal{O}_K is its ring of integers. Currently working on generalizing this theorem to any number field K through the Undergraduate Research Opportunities Program (UROP). Our paper can be found here: arXiv:2411.17055: The spherical Hall algebra of $\overline{\operatorname{Spec}(\mathcal{O}_K)}$. Reference: Zhiwei Yun

18.821 Project Laboratory in Mathematics

• Worked with a group on two guided research problems. Wrote a paper and gave a presentation for each of them. The first problem was about exploring the density of integer solutions to the diophantine equation $x^3 + y^3 = z^3 + w^3$. The second problem was about exploring the density and existence of *happy sequences*: sequences of zeroes and ones invariant under replacing 0 with 10 and 1 with 100.

Reference: Roman Bezrukavnikov

MIT 2024

MIT 2024 - Present

Directed Readings and Programs

Directed Reading Program	MIT 2023-2024
• Read and made a presentation about <i>h</i> -cobordisms and Smale's theorem. Reference: Joye Chen	
• Read and made a presentation about Using the Borsuk-Ulam Theorem by Jiří Reference: Elia Portnoy	Matoušek.
Preliminary Arizona Winter School	MIT 2023-2024
• Watched recorded lectures and worked on problem sets with a TA for 9 weeks. elliptic curves with complex multiplication in 2023 and local fields in 2024. References: Ju-Lee Kim and Bjorn Poonen	The topics were
18.099 Independent Study: Low-dimensional topology	MIT 2024
• Read <i>Knots and Links</i> by Dale Rolfsen. Reference: Joshua Wang	
18.099 Independent Study: The geometry of complex analysis	MIT 2023
• Read An Introduction to the Theory of Analytic Functions of One Complex Vo by Lars Ahlfors. Reference: Joshua Wang	ıriable
Presentations	
Isomorphism between Hall algebra and shuffle algebra	MIT 2024
Happy sequences	MIT 2024
Sums of cubes	MIT 2024
The h -cobordism theorem	MIT 2024
Heegard Splittings	MIT 2023
Applications of the Borsuk-Ulam Theorem	MIT 2023
Volunteer Roles, Teaching, and Coaching	
 HMMT Problem Czar August Wrote and chose problems for the February tournament and helped with the N tournament. 	t 2022 – May 2023 November
 Panamanian Mathematical Olympiad Member Janua Wrote a handout and gave a lecture about Circle Geometry in a seminar for hi Organized the shortlist of proposed problems for the 2021 and 2022 Panamania Olympiad. Reference: Pedro Marrone 	ary 2021 – Present gh school teachers. an Mathematical
 Panamanian Training Program Instructor October Served as Panama's Leader at the 2024 Iberoamerican Mathematical Olympiad Served as Panama's Deputy Leader at the 2023 International Mathematical Ober Currently serve as a math olympiad instructor, mainly in Geometry and Algebre Gave the new students an introductory IATEX course. Served as Panama's Deputy Leader at the 2020 Iberoamerican Mathematical Ober Served as a jury member at the 2020 Central American and Caribbean Mathematical Reference: Pedro Marrone 	ber 2020 – Present d. lympiad. ora. Dlympiad. matical Olympiad.
AIPCV Math Olympiad Coach April 2018	β – December 2020

- Trained the AIPCV school's team for the first and second rounds of the National Olympiad.
- Wrote a virtual book to train the team.

Work Experience

MIT PRIMES Circle Mentor	MIT, 2023-2024	
• Mentored high school students through the material of <i>The Knot Book</i> by Colin and <i>Thinking Geometrically: A Survey of Geometries</i> by Thomas Q. Sibley in 20 Reference: Marisa Gaetz and Mary Stelow	Adams in 2023 024.	
Undergraduate Assistant for 18.901 Introduction to Topology	MIT, 2023	
• Graded homework, midterms, and the final exam. Wrote solutions and held office hours.		
Undergraduate Math Association Mentor	MIT, 2022	
• Provided mentorship to students in introductory real analysis and algebra classes	5.	
Grader for 18.101 Analysis and Manifolds	MIT, 2023	
• Graded homework.		
Grader for 18.100B Real Analysis	MIT, 2022	
• Graded homework and wrote solutions.		

Selected Coursework

Algebra

- 18.725 Algebraic Geometry I
- 18.721 Introduction to Algebraic Geometry
- 18.705 Commutative Algebra
- 18.701 Algebra I and 18.702 Algebra II

Topology

- 18.905 Algebraic Topology I and 18.906 Algebraic Topology II
- 18.904 Seminar in Topology
- 18.901 Introduction to Topology

Number Theory

- 18.785 Number Theory I and 18.786 Number Theory II
- 18.783 Elliptic Curves
- 18.782 Introduction to Arithmetic Geometry

Analysis

- 18.101 Analysis and Manifolds
- 18.100B Real Analysis

Programming

- 6.100B Introduction to Computational Thinking and Data Science
- 6.100A Introduction to Computer Science and Programming in Python

Physics

• 8.01 Physics I and 8.02 Physics II